
March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 1

Authentication and Session Management

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 2

Authentication Basics

There are 3 methods of identifying an individual.
Something you have – e.g. token, certificate, cell
Something you are – e.g. biometrics
Something you know – e.g. password

For highly sensitive applications multifactor
authentication can be used
Financial services applications are moving towards

“stronger authentication”
Google is a good example of a free consumer

SaaS service that offers multi-factor authentication

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 3

Session Identifiers

Once a user has proven their identity, session
management functionality is employed

Each request sent to the server contains an identifier that
the server uses to associate requests authenticated users

The Session identifier is all that is need to prove
authentication for the rest of the session

Keeping Session IDs secure is critical
Session ID’s are typically passed in one of three places:
URL query string
Hidden Form Field
Cookie HTTP Header

 In general, this is transparent to the user and is handled
by the web server

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 4

Broken Session Management

The client can never be trusted
The client cannot be relied upon for providing or

ensuring security
The HTTP protocol does not have an innate method of

state-management
Anything deployed on the client-side is susceptible to

offline attacks
Data stored on the client must be protected from

unauthorized viewing or tampering
Avoid passing session ID’s in the URL Query string

(session rewriting)

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 5

Authentication Dangers

Passwords & PIN’s
Subject to brute-force attack
Favorite words often used , weak passwords
Users share with others
Plaintext or poor password storage

Certificates
Attackers obtain certificate files
Not all CA’s are trustworthy

Biometrics
Subject to Replay attacks
False/Positive and False/Negative errors

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 6

More Authentication Dangers

Session Management Weaknesses
Session Fixation
Weak or Predictable Session
Session Hijacking via XSS
Session Hijacking via network sniffing

Username Harvesting
Registration page makes this easy

Weak "Forgot Password” feature
Reset links sent over email

Weak "Change Password” feature
Does not require existing password
Access control weakness allows reset of other users

password

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 7

Login Functionality Attacks

Username enumeration which allows an
attacker to enumerate valid usernames for use
with further attacks

Password guessing which is most successful
when users are allowed to choose weak passwords

Brute-Force Attacks which succeeds when there
is no account lockout or monitoring of login
attempts

Credential Theft which succeeds when there is
no or poor encryption protecting credentials stored
or in transit

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 8

Attacks Against Session Identifiers

If session identifiers are issued in a predictable
fashion, an attacker can use a recently issued
Session ID to guess other valid values

If the possible range of values used for Session ID’s
is small, an attacker can brute force valid values

Session ID’s are also susceptible to disclosure via
network sniffing attacks

Once obtained, a session ID typically allows
impersonation of the user
Susceptible to replay
No need to steal user credentials

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 9

Credential Defenses

Various aspects the application should require the
user to provide proof of identity
Login
Password Reset
Shipping to a new address
Changing email address or other user profile items
Significant or anomalous transactions
Helps minimize CSRF and session hijacking attacks

 Implement server-side enforcement of password
syntax and strength (i.e. length, character
requirements, etc)
Helps minimize login password guessing

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 10

Additional Authentication Best Practices

Where possible restrict administrator access to machines located
on the local area network (i.e. it’s best to avoid remote
administrator access from public facing access points)

 Log all failed access authorization requests to a secure location
for review by administrators

 Perform reviews of failed login attempts on a periodic basis

 Utilise the strengths and functionality provided by the SSO
solution you chose, e.g. Netegrity

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 11

Login and Session Defenses

 Send all credentials and session id’s over well
configured HTTPS/SSL/TLS
Helps avoid session hijacking via network snifing

Develop generic failed login messages that do not
indicate whether the user-id or password was incorrect
Minimize username harvesting attack

 Enforce account lockout after a pre-determined
number of failed login attempts
Stops brute force threat

Account lockout should trigger a notification sent to
application administrators and should require manual
reset (via helpdesk)

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 12

More Session Defenses
 Ensure that Session ID values are not predictable and are

generated from a large range of possible values
20+ bytes, cryptographically random
Stored in HTTP Cookies
Cookies: Secure, HTTP Only, limited path
Helps avoid session id guessing or hijacking threat

Generate new session ID at login time
To avoid session fixation threat

 Session Timeout (sessions must “expire”)
Idle Timeout due to inactivity
Absolute Timeout
Logout Functionality
Will help minimize session hijacking threat

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 13

Logout/Session Defenses

Give users the option to log out of the application and
make the option available from every application page

When clicked, the logout option should prevent the user
from requesting subsequent pages without re-
authenticating to the application

The user’s session should be terminated using a method
such as session.abandon(), session.invalidate() during
logout

Users should be educated on the importance of logging
out, but the application should assume that the user will
forget

JavaScript can be used to force logout during window
close event

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 14

Password Defenses

 Disable Browser Autocomplete
 <form AUTOCOMPLETE="off”>
 <input AUTOCOMPLETE="off”>

 Only send passwords over HTTPS POST
 Do not display passwords in browser
 input type=password
 Do not display passwords in HTML document

 Store password on server via one-way encryption
 Hash password
 Use Salt
 Iterate Hash many times

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 15

Password Storage Code Sample

public String hash(String plaintext, String salt, int iterations)
 throws EncryptionException {
byte[] bytes = null;
try {
 MessageDigest digest = MessageDigest.getInstance(hashAlgorithm);
 digest.reset();
 digest.update(ESAPI.securityConfiguration().getMasterSalt());
 digest.update(salt.getBytes(encoding));
 digest.update(plaintext.getBytes(encoding));

 // rehash a number of times to help strengthen weak passwords
 bytes = digest.digest();
 for (int i = 0; i < iterations; i++) {
 digest.reset(); bytes = digest.digest(bytes);
 }
 String encoded = ESAPI.encoder().encodeForBase64(bytes,false);
 return encoded;
} catch (Exception ex) {
 throw new EncryptionException("Internal error", "Error");
}}

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 16

Forgot Password Secure Design

Require identity questions
Last name, account number, email, DOB
Enforce lockout policy

 Ask one or more good security questions
http://www.goodsecurityquestions.com/

Send the user a randomly generated token via out-of-
band communication
email, SMS or token

Verify code in same web session
Enforce lockout policy

 Change password
Enforce password policy

http://www.goodsecurityquestions.com/

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 17

Encryption in Transit (TLS)

Authentication credentials and session identifiers
must me be encrypted in transit via HTTPS/SSL
Starting when the login form is rendered
Until logout is complete
All other sensitive data should be protected via

HTTPS!
https://www.ssllabs.com free online assessment of

public facing server HTTPS configuration
https://www.owasp.org/index.php/Transport_Layer_P

rotection_Cheat_Sheet for HTTPS best practices

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 18

Insecure Use of HTTP Cookies

 Cookies provide a means of storing data that will be
sent by the user with every HTTP request

 Persistent cookies are stored on the users hard drive,
potentially exposing them to unauthorised access

 While cookies can be safe when used responsibly,
some applications store information in cookies that is
easily modified

 Interception or modification of cookies that are not
cryptographically secure could allow an attacker to:
 Gain access to unauthorized information
 Perform an activity on behalf of other users
 Not as widespread as used to be

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 19

Cookie Options

The Set-Cookie header uses the following syntax:

Set-Cookie: NAME=VALUE; expires=DATE;
path=PATH; domain=DOMAIN_NAME; secure

Name
The name of the cookie parameter

Value
The parameter value

Expires
The date on which to discard the cookie (if absent, the

cookie not persistent and is discarded when the browser is
closed.

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 20

Cookie Security Defenses

Path
The path under which all requests should receive the

cookie. “/” would indicate all paths on the server
Domain
The domain for which servers should receive the cookie (tail

match). For example, my.com would match all hosts within
that domain (www.my.com, test.my.com, demo.my.com,
etc.)

Secure
Indicates that the cookie should only be sent over HTTPS

connections
HTTPOnly
Helps ensure Javascript can not manipulate the cookie.

Good defense against XSS.

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 21

Cookie Security Defenses

Avoid storing sensitive data in cookies
Avoid using persistent cookies
Always set the “secure” cookie flag for HTTPS cookies to

prevent transmission of cookie values over unsecured
channels

Any sensitive cookie data should be encrypted if not
intended to be viewed/tampered by the user. Persistent
cookie data not intended to be viewed by others should
always be encrypted.

Cookie values susceptible to tampering should be
protected with an HMAC appended to the cookie, or a
server-side hash of the cookie contents (session variable)

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 22

Challenge!

Examine the following Pseudo code and
identify any issues with this session

management mechanism.

Session Management Code Review Challenge

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 23

ROW CODE FIX?
Y/N

1 BROWSER requests access to “Account Summary” from WEBSERVER

2 WEBSERVER checks whether the session is authenticated
3 IF session is authenticated:
4 Send “Account Summary” page to BROWSER
5 RETURN
6 IF session is NOT authenticated:
7 WEBSERVER grabs USERNAME posted by BROWSER
8 WEBSERVER asks DATABASE (“Select * from AuthTable where Username =

‘%s’”, USERNAME);

9 IF DATABASE returns no users:
10 WEBSERVER sends error message to BROWSER (“Invalid User Name %s”,

USERNAME);
11 RETURN
12 ELSE
13 WEBSERVER grabs PASSWORD posted by BROWSER

14 For each user returned by DATABASE:
15 IF user’s password equals PASSWORD:

16 Authenticate session
17 Generate Session ID:
18 Increment previous Session ID by 1

19 Store Session ID
20 Add Session ID to user’s cookie

21 IF no users have a password equal to PASSWORD:

22 WEBSERVER sends error message to Browser (“Invalid
password %s for username %s”, PASSWORD, USERNAME);

Pseudo Code: Session Creation, Authorization, Session Validation

March 2012 Authentication v3.1 Eoin Keary and Jim Manico Page 24

1 BROWSER requests access to “Account Summary” from WEBSERVER

2 WEBSERVER checks whether the session is authenticated

3 IF session is authenticated:

4 Send “Account Summary” page to BROWSER

5 RETURN

6 IF session is NOT authenticated:

7 WEBSERVER grabs USERNAME and PASSWORD posted by BROWSER

8 WEBSERVER asks DATABASE (“Select * from AuthTable where Username = ‘%s’ and
Password = ‘%s’”, USERNAME, PASSWORD);

9 IF DATABASE returns no users or more than one user:

10 WEBSERVER sends error message to BROWSER (“Invalid User Name or Password”);

11 RETURN

12 ELSE (DATABASE has returned exactly one user)

13 Authenticate session

14 Generate Session ID:

15 WEBSERVER generates secure Session ID

16 Store Session ID

17 Add Session ID to user’s cookie

Solution

	Authentication and Session Management
	Authentication Basics
	Session Identifiers
	Broken Session Management
	Authentication Dangers
	More Authentication Dangers
	Login Functionality Attacks
	Attacks Against Session Identifiers
	Credential Defenses
	Additional Authentication Best Practices
	Login and Session Defenses
	More Session Defenses
	Logout/Session Defenses
	Password Defenses
	Password Storage Code Sample
	Forgot Password Secure Design
	Encryption in Transit (TLS)
	Insecure Use of HTTP Cookies
	Cookie Options
	Cookie Security Defenses
	Cookie Security Defenses
	Session Management Code Review Challenge
	Slide Number 23
	Slide Number 24

